Genomic variant calling: Flexible tools and a diagnostic data set
نویسندگان
چکیده
The accurate identification of low-frequency variants in tumors remains an unsolved problem. To support characterization of the issues in a realistic setting, we have developed software tools and a reference dataset for diagnosing variant calling pipelines. The dataset contains millions of variants at frequencies ranging from 0.05 to 1.0. To generate the dataset, we performed whole-genome sequencing of a mixture of two Corriel cell lines, NA19240 and NA12878, the mothers of YRI (Y) and CEU (C) HapMap trios, respectively. The cells were mixed in three different proportions, 10Y/90C, 50Y/50C and 90Y/10C, in an effort to simulate the heterogeneity found in tumor samples. We sequenced three biological replicates for each mixture, yielding approximately 1.4 billion reads per mixture for an average of 64X coverage. Using the published genotypes as our reference, we evaluate the performance of a general variant calling algorithm, constructed as a demonstration of our flexible toolset, and make comparisons to a standard GATK pipeline. We estimate the overall FDR to be 0.028 and the FNR (when coverage exceeds 20X) to be 0.019 in the 50Y/50C mixture. Interestingly, even with these relatively well studied individuals, we predict over 475,000 new variants, validating in well-behaved coding regions at a rate of 0.97, that were not included in the published genotypes.
منابع مشابه
SMaSH: a benchmarking toolkit for human genome variant calling
MOTIVATION Computational methods are essential to extract actionable information from raw sequencing data, and to thus fulfill the promise of next-generation sequencing technology. Unfortunately, computational tools developed to call variants from human sequencing data disagree on many of their predictions, and current methods to evaluate accuracy and computational performance are ad hoc and in...
متن کاملRIG: Recalibration and Interrelation of Genomic Sequence Data with the GATK
Recent advances in variant calling made available in the Genome Analysis Toolkit (GATK) enable the use of validated single-nucleotide polymorphisms and indels to improve variant calling. However, large collections of variants for this purpose often are unavailable to research communities. We introduce a workflow to generate reliable collections of single-nucleotide polymorphisms and indels by l...
متن کاملSeqMule: automated pipeline for analysis of human exome/genome sequencing data
Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perfo...
متن کاملَA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...
متن کاملReview of Current Methods, Applications, and Data Management for the Bioinformatics Analysis of Whole Exome Sequencing
The advent of next-generation sequencing technologies has greatly promoted advances in the study of human diseases at the genomic, transcriptomic, and epigenetic levels. Exome sequencing, where the coding region of the genome is captured and sequenced at a deep level, has proven to be a cost-effective method to detect disease-causing variants and discover gene targets. In this review, we outlin...
متن کامل